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• Key component in many applications (propellant, mining)

• Sensitivity (performance and safety)

• Microstructure highly affects the sensitivity of EM (strong SPP linkage)
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Targeted material properties

Direct Numerical Simulation
(DNS)

Material scientist
Candidate Design

Creating samples

• Slow and expensive (hours - days)

• Vast search space

• Limited (idealized) representation
• Geometric primitives

Simple shape descriptors

• Not able to model all complex 
microstructure detail

Practically impossible to fully explore 
the design space and converge on an 
optimal solution

Traditional Design Approach
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Pressed Energetic Material (EM) and its background

Differential Evolution with EI

• Rapid SPP estimation:
from 24 ~ 48 hours to 0.5 seconds in a commodity desktop

• Interpretable and Accurate estimation
PARC was carefully designed to model differential equations of thermodynamics 
of energetic materials. 

Physics-Aware Recurrent Convolution (PARC)
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PARC performance
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Microstructure dimension: 25 × 25 (𝝁𝒎)
Shock pressure: 9.5 (GPa)
Computation time: 24~36h => .5s

Temperature Evolution Prediction Property and Performance Prediction

Result
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Microstructure Design Optimization

AI-assistants
• GAN  Microstructure Representation (search space)
• PARC Rapid and accurate estimation  (<1s)

Challenges
• Complex Objective function (latent space)
• Vast Search Space (106 evals. for grid search)
• Scarce Labeled data (prone to overfitting)

=> Optimizer concerns efficient, near-optimal, uncertainty (PARC in Bayesian NN)

GAN
• All possible shapes and configurations represented
• Great controllability

PARC
• Rapid and accurate estimation of ሶ𝑨 (~. 𝟓𝒔)

Differential Evolution with Expected Improvement
• Efficient (speed)
• High-quality suggestion

Targeted material 
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AI-assistantsSuggested Framework

Experiments and Results

Generative Adversarial Network (GAN)

Generator

Microstructure generation

𝜆𝑔

𝜆𝑔 ∈ ℝ15, 𝜆𝑔𝑖
∈ [−1.0, 1.0] for 𝑖 ∈ 1…15

“code”

Synthetic

Real

Representation Learning

Microstructure Representation and Search Space Defined

• Strong Parameterization:
parameterize microstructural design with low-dimensional latent vector

• Controllability
allows sophisticated optimization

Result
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ሶ𝐴ℎ𝑠_𝑒𝑠𝑡 , ሶ𝐴ℎ𝑠_𝑠𝑡𝑑

(38.16, 2.13)
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Microstructure

Temperature 
Estimation

Uncertainty Map

ሶ𝐴ℎ𝑠_𝑒𝑠𝑡 , ሶ𝐴ℎ𝑠_𝑠𝑡𝑑

(7.57, 0.99)
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡( ሶ𝐴ℎ𝑠_𝑒𝑠𝑡, ሶ𝐴ℎ𝑠_𝑠𝑡𝑑, ሶ𝐴ℎ𝑠_𝑏𝑒𝑠𝑡)

(Jones et al. 1998)

: = ሶ𝐴ℎ𝑠_𝑒𝑠𝑡 − ሶ𝐴ℎ𝑠_𝑚𝑎𝑥 [𝜙 z + ሶAℎ𝑠_𝑠𝑡𝑑 Φ 𝑧 ],    𝑤ℎ𝑒𝑟𝑒 𝑧 =
ሶ𝐴ℎ𝑠_𝑒𝑠𝑡− ሶ𝐴ℎ𝑠_𝑚𝑎𝑥

ሶ𝐴ℎ𝑠_𝑒𝑠𝑡

Exploitation: Strive for best ሶ𝐴ℎ𝑠 on current knowledge

Exploration: Improve knowledge on uncertain area

• Efficient, near-optimal solution optimization:
A significantly lower number of evaluations, but still provides near-optimal

• Optimization with uncertainty concerned:
Balance in exploitation and exploration using uncertainty from Bayesian PARC 

Result
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• 42 cases of HMX with the initially best reaction rate of 28.23 𝜇𝑚2/𝑛𝑠

• Found new microstructural design with over 180% increase (53.18 𝜇𝑚2/𝑛𝑠)

• Voids mostly aligned parallel to the direction of the shock propagation are highly reactive 

Previously best known Newly discovered

Conclusion
• Suggested AI-assisted framework for microstructural design with targeted property:

1) GAN: for better microstructure representation (search space)
2) Bayesian PARC: for accurate and rapid estimation (from 24-36 hours to 0.5s)
3) Efficient Optimizer: gradient-free optimization with uncertainty (efficient, near optimal 

• Validated suggested framework by discovering microstructural design with over 180% increase in reaction rate


